High-resolution Multiscale Modeling Framework Simulation of Low Clouds

Kuan-Man Xu¹ and Anning Cheng²

- 1. NASA Langley Research Center, Hampton, VA
- 2. Science Systems and Applications, Inc., Hampton, VA

Multiscale Modeling Framework

(Grabowski 2001; Khairoutdinov and Randall 2001)

- → A CRM is embedded at each grid column (~100s km) of the host GCM to represent cloud physical processes
- → The CRM explicitly simulates cloudscale dynamics (~1s km) and processes
- → Periodic lateral boundary condition for CRM (not extend to the edges)

Upgraded CRM with a third-order turbulence closure (IPHOC):

- →Double-Gaussian distribution of liquid-water potential temperature, total water mixing ratio and vertical velocity
- →Skewnesses, i.e., the three third-order moments, predicted
- → All first-, second-, third- and fourth-order moments, subgrid-scale condensation and

buoyancy based on the same PDF

Objectives for MMF climate simulation

- → to improve the simulation of low-level clouds in an MMF
- → to evaluate and compare the performance of model simulations against state-of-the-art observations

Models and observational data

- Standard SPCAM, at T21 resolution, 2-yr run (semi-Lagrangian)
- Upgraded SPCAM, called SPCAM-IPHOC, at T21 resolution (with semi-Lagrangian dynamic core); 2-yr run
- SPCAM-IPHOC-hires: SPCAM-IPHOC with finite-volume dynamic core (1.9°x2.5°); doubling the number of levels below 700 hPa (6 to 12); 10-yr run
- C3M (CloudSat, CALIPSO, CERES, MODIS) observations

Highlights of results

- → Improved low cloud simulation from the upgraded CRM and the higher-resolution finite-volume dynamic core-based SPCAM-IPHOC model, compared to the standard SPCAM and the lower-resolution SPCAM-IPHOC with semi-Lagrangian dynamic core, respectively
- → Improved surface precipitation distributions, esp., in the tropics
- → Radiative energy balance, compared to CERES observations
- → Overall performance from the higher-resolution SPCAM-IPHOC is better than SPCAM and SPCAM-IPHOC
- Cheng, A. and K.-M. Xu, 2011: Improved low-cloud simulation from a multiscale modeling framework with a third-order turbulence closure in its cloud-resolving model component. *J. Geophys. Res.*, 116, D14101, doi:10.1029/2010JD015362.
- Xu, K.-M., and A. Cheng, 2011: Further improvement of low-cloud simulation from a multiscale modeling framework with a third-order turbulence closure in its cloud resolving model component (in preparation).

Off-line sensitivity test to vertical resolution

ATEX Cumulus

ASTEX Stratocumulus

Low-level (sfc - 700 hPa) cloud amount (%)

Annual mean cloud fraction (color) and cloud liquid water (contour) west of South America (15°S)

Annual-mean surface precipitation rate

Summer precipitation in China

Oceanic surface latent heat flux

TOA albedo

TOA outgoing LW flux

Shortwave cloud radiative effect

LW cloud radiative effect

TOA and surface energy balance

	SW	LW	Imbalance
SPCAM- IPHOC	241.33	235.17	6.16
SPCAM- IPHOC-hires	240.10	240.07	0.03

	SW-sfc L	-W-sfc	LH	SH	Imbalance
SPCAM-					
IPHOC	161.34	55.16	81.65	23.03	-1.50
SPCAM-					
IPHOC-hires	161.47	57.21	88.97	23.06	7.77

Summary and conclusions

- Both upgraded SPCAM-IPHOC simulations show improved representation of
 - the global distributions of low-level clouds
 - the amounts of low-level clouds in the subtropics
 - surface precipitation (for higher-resolution one)
- The comparison against C3M observations shows further improved results in the higher-resolution MMF, for example, near-coast thin stratus clouds and deep convection in the tropics
- The TOA radiative energy balance is nearly perfect in the higher-resolution simulation
- There are rooms for further improvements

Summary of results: the Taylor diagram SPCAM-IPHOC vs. SPCAM

Significant improvement

Low-level cloud SW CRF LW CRF

Small/no improvment

Surface pressure
Middle-level cloud
High-level cloud
Surface precipitation
Latent heat flux

Degraded
Surface sensible flux

Summary of results: the Taylor diagram SPCAM-IPHOC-hires vs. SPCAM-IPHOC

Significant improvement

Surface pressure
Surface precipitation
Mid-level cloud
High-level cloud
Latent heat flux
SW CRF

Small/no improvement

Low-level cloud
LW CRF
Sensible heat flux

